Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho 2 đường tròn (O,R) và (O',r) với R>r tiếp xúc trong tại A

Cho 2 đường tròn (O,R) và (O',r) với R>r tiếp xúc trong tại A . Dây BC của (O,R) tiếp xúc với (O',r) tại M ( 3 điểm O,A,M ko thẳng hàng ) . Chứng minh rằng tia AM là phân giác của góc BAC
0 trả lời
Hỏi chi tiết
44
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh rằng tia AM là phân giác của góc BAC, ta cần chứng minh rằng góc BAM bằng góc CAM.

Gọi I là giao điểm của tia AM và đường tròn (O',r). Ta cần chứng minh rằng góc BAM bằng góc CAM, tức là góc BAI bằng góc CAI.

Vì dây BC của đường tròn (O,R) tiếp xúc với đường tròn (O',r) tại M, nên góc BMC là góc vuông. Do đó, góc BIM cũng là góc vuông.

Ta có:
- Góc BAI = góc BAM + góc MAI (1)
- Góc CAI = góc CAM + góc MAI (2)

Từ (1) và (2), ta cần chứng minh rằng góc BAM bằng góc CAM, tức là góc BAI bằng góc CAI.

Giả sử góc BAI khác góc CAI. Khi đó, góc BAI + góc CAI > 180 độ. Nhưng góc BAI + góc CAI = góc BAM + góc MAI + góc CAM + góc MAI = góc BAM + góc CAM + 2góc MAI = 180 độ (vì góc BAM + góc CAM = 180 độ và góc MAI = góc MAI).

Vậy giả sử sai, tức là góc BAI bằng góc CAI. Do đó, tia AM là phân giác của góc BAC.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư