Cho tam giác ABC. Về phía ngoài của tam giác vẽ các tam giác đều ABE, ACF. Gọi H là trực tâm của tam giác ABE Gọi I là trung điểm của BC lấy điểm K sao cho I là trung điểm của HK. Chứng minh
a. Tgiac BHI=Tg CKI
b. góc AHF= góc KCF
c. Tg KHF đều
d.Tính FHI và độ dài HF với IF=5cm
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Trên tia đối của IH lấy điểm K sao cho IH = IK.
Tam giác AEB đều có các đường cao nên đồng thời cũng là phân giác
Lúc đó các góc chia ra bởi 3 đường cao bằng 300
Do đó ^HAF = 900 + ^BAC
^KCF = 3600 - (^ICK + ^ACB + ^ACF) => ^KCF = 900 + ^BAC
Suy ra tam giác AHF = tam giác CKF nen FH = FK, ^AFH = ^CFK, do đó ^HFK = 600
Suy ra HFK là tam giác đều có FI là trung tuyến nên cũng là đường cao
Vậy tam giác FIH là nửa tam giác đều nên có các góc lần lượt là 909;600;300
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |