Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A đường phân giác AD của BA

Cho tam giác ABC cân tại A đường phân giác AD của BA. a) CM:∆ABD=∆ACD và AD vuông góc với BC. b) Kẻ trung tuyến BM của ∆ABC cắt BM tại G là trung tâm của ∆ BAG và BG=GN. c) CM:∆ GNC cân tại G và ∆ GNC là tam giác đều.
1 Xem trả lời
Hỏi chi tiết
57
Tham khảo câu trả lời từ Trợ lý ảo Lazi
a) Ta có:
CM:∆ABD=∆ACD (do cân)
Và AD vuông góc với BC (do là đường phân giác)
Vậy ta có ∠BAD = ∠CAD và ∠ADB = ∠ADC
Do đó, ∆ABD ≅ ∆ACD (theo góc - cạnh - góc)

b) Gọi M là trung điểm của BC. Ta có BM // AD và BM = AD (do trung tuyến)
Vậy ta có ∆ABM ≅ ∆DAM (theo góc - cạnh - góc)
Do đó, AG = GM và BG = GN (do G là trung tâm của ∆BAG)

c) Ta có GN = BG = GM (do G là trung tâm của ∆BAG)
Vậy ta có ∆GNC cân tại G và ∆GNC là tam giác đều (vì GN = NC và GC = GN)
2
0
Ngọc Nguyễn
20/05 18:33:38
+5đ tặng

a) Do AD là tia phân giác của ∠BAC (gt)

⇒ ∠BAD = ∠CAD

Do ∆ABC cân tại A (gt)

⇒ AB = AC

Xét ∆ABD và ∆ACD có:

AB = AC (cmt)

∠BAD = ∠CAD (cmt)

AD là cạnh chung

⇒ ∆ABD = ∆ACD (c-g-c)

⇒ ∠ADB = ∠ADC (hai góc tương ứng)

Mà ∠ADB + ∠ADC = 180⁰ (kề bù)

⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰

⇒ AD ⊥ BC

b) ∆ABC cân tại A (gt)

AD đường tia phân giác (gt)

⇒ AD cũng là đường trung tuyến

Lại có:

BM là đường trung tuyến của ∆ABC (gt)

BM cắt AD tại G (gt)

⇒ G là trọng tâm của ∆ABC

⇒ BG = 2GM

Do BM là đường trung tuyến của ∆ABC (gt)

⇒ M là trung điểm của AC

⇒ AM = CM

Do CN ⊥ BC (gt)

AD ⊥ BC (cmt)

⇒ CN // AD

⇒ ∠CNM = ∠AGM (so le trong)

Xét ∆CMN và ∆AMG có:

∠CNM = ∠AGM (cmt)

∠CMN = ∠AMG (đối đỉnh)

CM = AM (cmt)

⇒ ∆CMN = ∆AMG (g-c-g)

⇒ MN = MG (hai cạnh tương ứng)

⇒ GN = 2GM

Mà BG = 2GM (cmt)

⇒ BG = GN

c) Do AD là đường trung tuyến của ∆ABC (cmt)

⇒ D là trung điểm của BC

⇒ BD = CD

Xét hai tam giác vuông: ∆GDB và ∆GDC có:

GD là cạnh chung

BD = CD (cmt)

⇒ ∆GDB = ∆GDC (hai cạnh góc vuông)

⇒ BG = CG (hai cạnh tương ứng)

Mà BG = GN (cmt)

⇒ GN = CG

⇒ ∆GNC cân tại G

Để ∆GNC đều thì ∠GNC = 60⁰

Mà CN // AD (cmt)

⇒ ∠GNC = ∠AGM = 60⁰ (so le trong)

⇒ ∠MAG = 90⁰ - 60⁰ = 30⁰

⇒ ∠CAD = 30⁰

⇒ ∠BAD = ∠CAD = 30⁰

⇒ ∠BAC = ∠BAD + ∠CAD = 30⁰ + 30⁰ = 60⁰

Mà ∆ABC cân (gt)

⇒ ∆ABC đều

Vậy ∆ABC đều thì ∆GNC đều

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×