Tính : A = 1/3 - [(-5/4) - (1/4 + 3/8)], B = (1/2 - 7/13 - 1/3) + (-6/13 + 1/2 + 1 và 1/2) Tham khảo câu trả lời từ Trợ lý ảo Lazi Let's solve the expressions for \( A \) and \( B \) step by step. ### Expression for \( A \): \[ A = \frac{1}{3} - \left[ -\frac{5}{4} - \left( \frac{1}{4} + \frac{3}{8} \right) \right] \] First, simplify the inner parentheses: \[ \frac{1}{4} + \frac{3}{8} \] To add these fractions, we need a common denominator. The least common multiple of 4 and 8 is 8. \[ \frac{1}{4} = \frac{2}{8} \] So, \[ \frac{2}{8} + \frac{3}{8} = \frac{5}{8} \] Now substitute back into the expression: \[ A = \frac{1}{3} - \left[ -\frac{5}{4} - \frac{5}{8} \right] \] Next, find a common denominator for \(\frac{5}{4}\) and \(\frac{5}{8}\). The least common multiple of 4 and 8 is 8. \[ \frac{5}{4} = \frac{10}{8} \] So, \[ -\frac{10}{8} - \frac{5}{8} = -\frac{15}{8} \] Now substitute back into the expression: \[ A = \frac{1}{3} - \left( -\frac{15}{8} \right) \] \[ A = \frac{1}{3} + \frac{15}{8} \] To add these fractions, we need a common denominator. The least common multiple of 3 and 8 is 24. \[ \frac{1}{3} = \frac{8}{24} \] \[ \frac{15}{8} = \frac{45}{24} \] So, \[ \frac{8}{24} + \frac{45}{24} = \frac{53}{24} \] Thus, \[ A = \frac{53}{24} \] ### Expression for \( B \): \[ B = \left( \frac{1}{2} - \frac{7}{13} - \frac{1}{3} \right) + \left( -\frac{6}{13} + \frac{1}{2} + 1 \frac{1}{2} \right) \] First, simplify the mixed number \( 1 \frac{1}{2} \): \[ 1 \frac{1}{2} = 1 + \frac{1}{2} = \frac{3}{2} \] Now, simplify the second part of the expression: \[ -\frac{6}{13} + \frac{1}{2} + \frac{3}{2} \] Combine \(\frac{1}{2}\) and \(\frac{3}{2}\): \[ \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 2 \] So, \[ -\frac{6}{13} + 2 \] Convert 2 to a fraction with a denominator of 13: \[ 2 = \frac{26}{13} \] So, \[ -\frac{6}{13} + \frac{26}{13} = \frac{20}{13} \] Now, simplify the first part of the expression: \[ \frac{1}{2} - \frac{7}{13} - \frac{1}{3} \] Find a common denominator for \(\frac{1}{2}\), \(\frac{7}{13}\), and \(\frac{1}{3}\). The least common multiple of 2, 13, and 3 is 78. \[ \frac{1}{2} = \frac{39}{78} \] \[ \frac{7}{13} = \frac{42}{78} \] \[ \frac{1}{3} = \frac{26}{78} \] So, \[ \frac{39}{78} - \frac{42}{78} - \frac{26}{78} = \frac{39 - 42 - 26}{78} = \frac{-29}{78} \] Now combine the two parts: \[ B = \frac{-29}{78} + \frac{20}{13} \] Convert \(\frac{20}{13}\) to a fraction with a denominator of 78: \[ \frac{20}{13} = \frac{120}{78} \] So, \[ B = \frac{-29}{78} + \frac{120}{78} = \frac{91}{78} \] Thus, \[ B = \frac{91}{78} \] So the final results are: \[ A = \frac{53}{24} \] \[ B = \frac{91}{78} \]