(√7+3-√21/√7+√3):(7/√21+3+3/√21-7-10/√21 Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the given expression \((\sqrt{7} + 3 - \frac{\sqrt{21}}{\sqrt{7}} + \sqrt{3}) : (\frac{7}{\sqrt{21}} + 3 + \frac{3}{\sqrt{21}} - 7 - \frac{10}{\sqrt{21}})\), we need to break it down step by step. First, let's simplify the numerator: \[ \sqrt{7} + 3 - \frac{\sqrt{21}}{\sqrt{7}} + \sqrt{3} \] Notice that \(\frac{\sqrt{21}}{\sqrt{7}}\) simplifies to \(\sqrt{\frac{21}{7}} = \sqrt{3}\). So the numerator becomes: \[ \sqrt{7} + 3 - \sqrt{3} + \sqrt{3} \] The \(-\sqrt{3}\) and \(+\sqrt{3}\) cancel each other out, leaving us with: \[ \sqrt{7} + 3 \] Next, let's simplify the denominator: \[ \frac{7}{\sqrt{21}} + 3 + \frac{3}{\sqrt{21}} - 7 - \frac{10}{\sqrt{21}} \] First, simplify the fractions involving \(\sqrt{21}\): \[ \frac{7}{\sqrt{21}} = \frac{7}{\sqrt{7 \cdot 3}} = \frac{7}{\sqrt{7} \cdot \sqrt{3}} = \frac{7 \cdot \sqrt{3}}{7} = \sqrt{3} \] \[ \frac{3}{\sqrt{21}} = \frac{3}{\sqrt{7 \cdot 3}} = \frac{3}{\sqrt{7} \cdot \sqrt{3}} = \frac{3 \cdot \sqrt{3}}{7} \] \[ \frac{10}{\sqrt{21}} = \frac{10}{\sqrt{7 \cdot 3}} = \frac{10}{\sqrt{7} \cdot \sqrt{3}} = \frac{10 \cdot \sqrt{3}}{7} \] So the denominator becomes: \[ \sqrt{3} + 3 + \frac{3 \cdot \sqrt{3}}{7} - 7 - \frac{10 \cdot \sqrt{3}}{7} \] Combine the terms involving \(\sqrt{3}\): \[ \sqrt{3} + 3 - 7 + \left(\frac{3 \cdot \sqrt{3}}{7} - \frac{10 \cdot \sqrt{3}}{7}\right) \] \[ \sqrt{3} + 3 - 7 + \left(\frac{3 \cdot \sqrt{3} - 10 \cdot \sqrt{3}}{7}\right) \] \[ \sqrt{3} + 3 - 7 + \left(\frac{-7 \cdot \sqrt{3}}{7}\right) \] \[ \sqrt{3} + 3 - 7 - \sqrt{3} \] The \(\sqrt{3}\) and \(-\sqrt{3}\) cancel each other out, leaving us with: \[ 3 - 7 = -4 \] Now, we have the simplified numerator and denominator: \[ \frac{\sqrt{7} + 3}{-4} \] So the final simplified expression is: \[ \frac{\sqrt{7} + 3}{-4} = -\frac{\sqrt{7} + 3}{4} \]