Bài tập  /  Bài đang cần trả lời

So sánh:

so sánh
243^9 và 83^13
3 Xem trả lời
Hỏi chi tiết
83
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để so sánh \(243^9\) và \(83^13\), chúng ta có thể sử dụng logarit để làm cho các số này dễ so sánh hơn.

Giả sử chúng ta muốn so sánh \(a = 243^9\) và \(b = 83^13\). Chúng ta sẽ tính logarit của cả hai số này và so sánh các giá trị logarit.

1. Tính \(\log(a)\):
\[
\log(a) = \log(243^9) = 9 \cdot \log(243)
\]

2. Tính \(\log(b)\):
\[
\log(b) = \log(83^13) = 13 \cdot \log(83)
\]

Bây giờ chúng ta cần tính giá trị của \(\log(243)\) và \(\log(83)\).

- \(243 = 3^5\), do đó:
\[
\log(243) = \log(3^5) = 5 \cdot \log(3)
\]

- \(\log(83)\) là một giá trị mà chúng ta có thể tra cứu hoặc sử dụng máy tính để tính toán.

Giả sử chúng ta sử dụng giá trị gần đúng:
\[
\log(3) \approx 0.4771
\]
\[
\log(83) \approx 1.9191
\]

Bây giờ chúng ta có thể tính:
\[
\log(243) = 5 \cdot 0.4771 = 2.3855
\]

Và sau đó:
\[
\log(a) = 9 \cdot 2.3855 = 21.4695
\]

\[
\log(b) = 13 \cdot 1.9191 = 24.9483
\]

So sánh \(\log(a)\) và \(\log(b)\):
\[
21.4695 < 24.9483
\]

Do đó, \(243^9 < 83^13\).
3
0
Trung Trần
05/07 23:21:51
+5đ tặng
so sánh
243^9      83^13
=(3^4)9. =  (3^4)13
=3^32.     =  3^52
=>
243^9 < 83^13

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
0
Hàa
05/07 23:24:13
+4đ tặng
243^9 = (3^5)^9 = 3^45 
và 83^13 > 81^13 = ((3^4)^13 = 3^52
VÌ 52>45=>3^52>3^45=> 83^13>243^9
1
0
Antony
06/07 01:44:44
+3đ tặng
243^9 = 3^5 ^9 = 3^45
và 83^13  > 81^13 = 3^4 ^13 = 3^52 > 3^45 > 243^9 

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×