Cho hai số hữu tỉ x; y thỏa mãn x + y và xy đều là số nguyên. Chứng minh rằng cả hai số x, y đều là số nguyên Cho hai số hữu tỉ x,y thỏa mãn x + y và xy đều là số nguyên . Chứng minh rằng cả hai số x ,y đều là số nguyên
Tham khảo câu trả lời từ Trợ lý ảo Lazi Để chứng minh rằng nếu \( x \) và \( y \) là hai số hữu tỉ thỏa mãn \( x + y \) và \( xy \) đều là số nguyên thì \( x \) và \( y \) đều là số nguyên, ta có thể làm như sau: Giả sử \( x \) và \( y \) là hai số hữu tỉ. Điều này có nghĩa là chúng có thể được biểu diễn dưới dạng phân số: \[ x = \frac{a}{b} \] \[ y = \frac{c}{d} \] trong đó \( a, b, c, d \) là các số nguyên và \( b, d \neq 0 \). Theo giả thiết, \( x + y \) và \( xy \) đều là số nguyên. Ta sẽ kiểm tra từng điều kiện một. 1. **Điều kiện \( x + y \) là số nguyên:** \[ x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \] Vì \( x + y \) là số nguyên, nên \( \frac{ad + bc}{bd} \) là số nguyên. Điều này có nghĩa là \( bd \) phải chia hết cho \( ad + bc \). 2. **Điều kiện \( xy \) là số nguyên:** \[ xy = \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \] Vì \( xy \) là số nguyên, nên \( \frac{ac}{bd} \) là số nguyên. Điều này có nghĩa là \( bd \) phải chia hết cho \( ac \). Bây giờ, ta cần chứng minh rằng \( x \) và \( y \) đều là số nguyên. Để làm điều này, ta sẽ sử dụng tính chất của các số nguyên và các điều kiện trên. Từ điều kiện \( bd \) chia hết cho \( ac \), ta có thể viết: \[ bd = k \cdot ac \] với \( k \) là một số nguyên. Từ điều kiện \( bd \) chia hết cho \( ad + bc \), ta có thể viết: \[ bd = m \cdot (ad + bc) \] với \( m \) là một số nguyên. Bây giờ, ta sẽ xem xét các điều kiện này để tìm ra mối quan hệ giữa \( a, b, c, d \). Nếu \( b \) và \( d \) là các ước số nguyên tố, thì \( bd \) phải là một số nguyên tố hoặc tích của các số nguyên tố. Điều này có nghĩa là \( a \) và \( c \) phải chia hết cho \( b \) và \( d \) tương ứng để \( x \) và \( y \) là số nguyên. Do đó, \( x \) và \( y \) phải là các số nguyên để thỏa mãn các điều kiện trên. Vậy, ta đã chứng minh rằng nếu \( x + y \) và \( xy \) đều là số nguyên thì \( x \) và \( y \) đều là số nguyên.