Bài tập  /  Bài đang cần trả lời

Tìm GTLN của B = -x^2 + 3x + 1

Tim GTLN cua B=-x mu 2 +3x+1
4 Xem trả lời
Hỏi chi tiết
81
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm giá trị lớn nhất (GTLN) của hàm số \( B = -x^2 + 3x + 1 \), ta có thể sử dụng các bước sau:

1. **Xác định đạo hàm của hàm số**:
Đạo hàm của \( B \) theo \( x \) là:
\[
B' = \frac{d}{dx}(-x^2 + 3x + 1) = -2x + 3
\]

2. **Tìm nghiệm của đạo hàm**:
Để tìm giá trị cực đại hoặc cực tiểu, ta giải phương trình \( B' = 0 \):
\[
-2x + 3 = 0 \implies x = \frac{3}{2}
\]

3. **Xác định giá trị của hàm số tại nghiệm**:
Thay \( x = \frac{3}{2} \) vào hàm số \( B \):
\[
B\left(\frac{3}{2}\right) = -\left(\frac{3}{2}\right)^2 + 3\left(\frac{3}{2}\right) + 1
\]
\[
= -\frac{9}{4} + \frac{9}{2} + 1
\]
\[
= -\frac{9}{4} + \frac{18}{4} + \frac{4}{4}
\]
\[
= \frac{18 - 9 + 4}{4}
\]
\[
= \frac{13}{4}
\]

4. **Kiểm tra tính chất của hàm số**:
Vì hệ số của \( x^2 \) là âm (\( -1 \)), đồ thị của hàm số là một parabol mở xuống, do đó giá trị tại đỉnh của parabol là giá trị lớn nhất của hàm số.

Vậy, giá trị lớn nhất của hàm số \( B = -x^2 + 3x + 1 \) là \( \frac{13}{4} \).
1
0
Phonggg
08/07/2024 22:54:47
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Hưng
08/07/2024 22:59:18
+4đ tặng
-x^2 +3x+1
-( x^2 - 3x -1)
- (x^2 - 3x +9/4 -13/4)
= -( (x- 3/2)^2 - 13/4)
(x- 3/2)^2 >=0 
=> (x- 3/2)^2 - 13/4 >= -13/4
=>  -( (x- 3/2)^2 - 13/4) < = 13/4
max khi x - 3/2 = 0 =>  x = 3/2 
Hưng
Chấm điểm nha bạn
1
0
Trúc Nguyễn
08/07/2024 23:00:43
+3đ tặng
B=-(x^2-3x-1) =-(x^2-2*3/2*x+9/4 -13/4)
=-(x-3/2)^2 +13/4
vì(x-3/2)>=0 với mọi x nên -(x-3/2)^2<=0 với mọi x
vậy B<=13/4 với mọi x
vậy Bmax=13/4 khi (x-3/2)^2=0 khi x-3/2=0 khi x=3/2.
CHẤM ĐIỂM NHA.
0
0

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×