Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lấy P trên đường thẳng MN sao cho N là trung điểm của MP.
Xét tam giác AMN và tam giác CPN có : AN = CN (N là trung điểm của AC )
MN = NP (N là trung điểm của MP )
góc ANM = góc CNP (đối đỉnh )
==> tgiac AMN = tgiac CPN (c.g.c)
==>AM = CP và góc MAN = góc NCP
Mà 2 góc này ở vị trí so le trong nên AM // CP hay AB // CP ==> góc MBP = góc BPC (SLT)
Xét tgiac MPB và tgiac CPB có: BM = CP , góc MBP = góc BPC, BP chung
==> tgiac MPB = tgiac CPB (c.g.c) ==> MP = BC mà MN = 1/2 MP ==> MN = 1/2 BC
ta có góc MPB = góc PBC (2 góc tương ứng ) mà 2 góc này ở vị trí so le trong ==> MN // BC
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |