Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A . Trên cạnh AC lấy điểm M, trên đoạn thẳng BM lấy điểm K sao cho BCK = ABM . Tích MB.MK bằng

giúp mik vs ạ
----- Nội dung dịch tự động từ ảnh -----
Bài 3: Cho tam giác ABC cân tại A . Trên cạnh AC lấy điểm M, trên đoạn thẳng BM lấy điểm K sao cho BCK = ABM . Tích MB.MK bằng:
A. 2MC².
B. AC².
C. MC².
D. BC²
3 Xem trả lời
Hỏi chi tiết
56
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải bài toán này, ta cần sử dụng các tính chất của tam giác cân và các góc trong tam giác.

1. Tam giác ABC cân tại A, do đó AB = AC.
2. Trên cạnh AC lấy điểm M.
3. Trên đoạn thẳng BM lấy điểm K sao cho góc BCK = góc ABM.

Ta có:
- Tam giác ABC cân tại A nên góc BAC = góc BCA.
- Góc BCK = góc ABM (theo đề bài).

Xét tam giác ABM và tam giác BCK:
- Góc ABM = góc BCK (theo đề bài).
- Góc BAM = góc BKC (do tam giác ABC cân tại A).

Do đó, tam giác ABM và tam giác BCK đồng dạng với nhau theo trường hợp góc-góc (AA).

Từ tính chất đồng dạng của hai tam giác, ta có:
\[ \frac{AB}{BC} = \frac{BM}{BK} \]

Vì AB = AC (tam giác ABC cân tại A) nên:
\[ \frac{AC}{BC} = \frac{BM}{BK} \]

Do đó:
\[ BM \cdot BK = AC \cdot BC \]

Tuy nhiên, vì tam giác ABC cân tại A nên AC = AB = BC, do đó:
\[ BM \cdot BK = AC^2 \]

Vậy đáp án đúng là:
\[ \boxed{AC^2} \]
3
0
Ngoc Trinh
12/07/2024 19:47:58
+5đ tặng
=> đáp án C

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
2
0
Nguyên
12/07/2024 19:48:52
+4đ tặng
=>MB/MC=MC/MK
=>MB.MK=MC^2
=>C
Mứt Dừa
cảm ơn bạn nha
4
0
Phương
12/07/2024 19:48:56
+3đ tặng
Mứt Dừa
cảm ơn bạn nha

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×