Tìm số hữu tỉ x biết rằng Tham khảo câu trả lời từ Trợ lý ảo Lazi Để tìm số hữu tỉ \( x \) trong các bài toán sau, ta sẽ giải từng phương trình một. a) \(\left(\frac{2}{5} - x\right) : \frac{1}{3} + \frac{1}{2} = -4\) Đầu tiên, ta giải phương trình: \[ \left(\frac{2}{5} - x\right) : \frac{1}{3} + \frac{1}{2} = -4 \] Chuyển vế: \[ \left(\frac{2}{5} - x\right) \cdot 3 + \frac{1}{2} = -4 \] \[ 3 \left(\frac{2}{5} - x\right) + \frac{1}{2} = -4 \] \[ 3 \left(\frac{2}{5} - x\right) = -4 - \frac{1}{2} \] \[ 3 \left(\frac{2}{5} - x\right) = -\frac{9}{2} \] \[ \frac{2}{5} - x = -\frac{3}{2} \] \[ -x = -\frac{3}{2} - \frac{2}{5} \] \[ -x = -\frac{15}{10} - \frac{4}{10} \] \[ -x = -\frac{19}{10} \] \[ x = \frac{19}{10} \] b) \(\left(-3 + \frac{3}{x} - \frac{1}{3}\right) : \left(1 + \frac{2}{5} + \frac{2}{3}\right) = -\frac{5}{4}\) Đầu tiên, ta giải phương trình: \[ \left(-3 + \frac{3}{x} - \frac{1}{3}\right) : \left(1 + \frac{2}{5} + \frac{2}{3}\right) = -\frac{5}{4} \] Chuyển vế: \[ \left(-3 + \frac{3}{x} - \frac{1}{3}\right) = -\frac{5}{4} \cdot \left(1 + \frac{2}{5} + \frac{2}{3}\right) \] \[ \left(-3 + \frac{3}{x} - \frac{1}{3}\right) = -\frac{5}{4} \cdot \left(\frac{15}{15} + \frac{6}{15} + \frac{10}{15}\right) \] \[ \left(-3 + \frac{3}{x} - \frac{1}{3}\right) = -\frac{5}{4} \cdot \frac{31}{15} \] \[ \left(-3 + \frac{3}{x} - \frac{1}{3}\right) = -\frac{31}{12} \] \[ -3 + \frac{3}{x} - \frac{1}{3} = -\frac{31}{12} \] \[ \frac{3}{x} = -\frac{31}{12} + 3 + \frac{1}{3} \] \[ \frac{3}{x} = -\frac{31}{12} + \frac{36}{12} + \frac{4}{12} \] \[ \frac{3}{x} = \frac{9}{12} \] \[ \frac{3}{x} = \frac{3}{4} \] \[ x = 4 \] c) \(-\frac{3x}{4} \left(\frac{1}{x} + \frac{2}{7}\right) = 0\) Đầu tiên, ta giải phương trình: \[ -\frac{3x}{4} \left(\frac{1}{x} + \frac{2}{7}\right) = 0 \] Vì tích của hai số bằng 0, nên một trong hai số phải bằng 0. Do đó: \[ -\frac{3x}{4} = 0 \quad \text{hoặc} \quad \left(\frac{1}{x} + \frac{2}{7}\right) = 0 \] \[ -\frac{3x}{4} = 0 \Rightarrow x = 0 \quad \text{(loại vì x không thể bằng 0 trong phân số)} \] \[ \frac{1}{x} + \frac{2}{7} = 0 \] \[ \frac{1}{x} = -\frac{2}{7} \] \[ x = -\frac{7}{2} \] d) \(3 - \frac{1 - \frac{1}{2}}{1 + \frac{1}{x}} = \frac{2}{3}\) Đầu tiên, ta giải phương trình: \[ 3 - \frac{1 - \frac{1}{2}}{1 + \frac{1}{x}} = \frac{2}{3} \] Chuyển vế: \[ 3 - \frac{\frac{1}{2}}{1 + \frac{1}{x}} = \frac{2}{3} \] \[ 3 - \frac{\frac{1}{2}}{\frac{x+1}{x}} = \frac{2}{3} \] \[ 3 - \frac{\frac{1}{2} \cdot \frac{x}{x+1}} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] Chuyển vế: \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)} = \frac{2}{3} \] \[ 3 - \frac{x}{2x+2} = \frac{2}{3} \] \[ 3 - \frac{x}{2(x+1)}