Bài tập  /  Bài đang cần trả lời

Chọn đáp án đúng

----- Nội dung dịch tự động từ ảnh -----
Bài 4. Cho đa thức A = -2xy² + \(\frac{1}{3}\)x³y - x - \(\frac{1}{3}\)x³y + xy² + x - 4x²y.

Tìm bậc của A.
A. 1
B. 2
C. 3
D. 4

Bài 5. Cho đa thức 4x⁵y² - 3x³y + 7x³y + ax⁵y² (a là hằng số). Biết rằng bậc của đa thức bằng 4. Tìm a?
A. 1
B. 2
C. 3
D. -4

Dạng 4. Tính giá trị của đa thức.
1 Xem trả lời
Hỏi chi tiết
26
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm bậc của các đa thức trong bài này, ta thực hiện như sau:

**Bài 4:**
Đa thức \( A = -2xy^2 + \frac{1}{3}x^3y - x - \frac{1}{3}x^3y + xy^2 + x + -4x^2y \).

Ta nhóm lại và xem xét các hạng tử:

- Hạng tử có bậc cao nhất là \( \frac{1}{3}x^3y \), với bậc tổng là \( 3 + 1 = 4 \).
- Bậc cao nhất của các hạng tử khác đều nhỏ hơn hoặc bằng 4.

Vậy bậc của đa thức \( A \) là **4**. Đáp án đúng là **C. 4**.

---

**Bài 5:**
Đa thức \( 4x^5y^2 - 3x^3y + 7x^3y + ax^5y^2 \).

Ta cũng xem xét các hạng tử:

- Hạng tử \( 4x^5y^2 \) có bậc \( 5 + 2 = 7 \).
- Hạng tử \( -3x^3y \) có bậc \( 3 + 1 = 4 \).
- Hạng tử \( 7x^3y \) cũng có bậc là \( 4 \).
- Hạng tử \( ax^5y^2 \) là \( a \) là hàng số, và bậc là \( 5 + 2 = 7 \).

Vậy bậc cao nhất của đa thức là **7** và không phụ thuộc vào \( a \).

Do vậy, không có đáp án nào đúng nếu bậc cao nhất là 7.

Hy vọng rằng để xác định \( a \), bạn có thể cho biết thêm thông tin nào đó tùy vào ngữ cảnh bạn đang tìm kiếm.
1
0
Ngocdiep
30/07 19:30:46
+5đ tặng
Bài 4 
bậc của đa thức là bậc cao nhất của biểu thức đó 
ta thấy biểu thức A  có bậc cao nhất là4(3+1) 
—> đáp án D 
bài 5 : (đề sao á)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×