Rút gọn, [(√x +4) / (x - 2√x ) + ( 3 / √x - 2 )] : [(√x / √x - 2 ) - ( √x +2 / √x )] Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the given expression, we can follow these steps: 1. **Separate the numerator and the denominator** of the main expression. 2. **Simplify each part** of the expression. 3. **Combine and simplify** the final result. Let's break it down step-by-step. ### Step 1: Identify the Expression The expression is: \[ \frac{\left( \frac{\sqrt{x} + 4}{x - 2\sqrt{x}} + \frac{3}{\sqrt{x} - 2} \right)}{\left( \frac{\sqrt{x}}{\sqrt{x} - 2} - \frac{\sqrt{x} + 2}{\sqrt{x}} \right)} \] ### Step 2: Simplify the Numerator **Numerator:** 1. First part: \( \frac{\sqrt{x} + 4}{x - 2\sqrt{x}} \) Notice that \( x - 2\sqrt{x} = (\sqrt{x})^2 - 2\sqrt{x} = (\sqrt{x} - 2)^2 \). So, the first part simplifies to: \[ \frac{\sqrt{x} + 4}{(\sqrt{x} - 2)^2} \] 2. Second part: \( \frac{3}{\sqrt{x} - 2} \) Now we combine both fractions: - To combine \( \frac{\sqrt{x} + 4}{(\sqrt{x} - 2)^2} \) and \( \frac{3}{\sqrt{x} - 2} \), we need a common denominator, which is \( (\sqrt{x} - 2)^2 \): \[ \frac{\sqrt{x} + 4 + 3(\sqrt{x} - 2)}{(\sqrt{x} - 2)^2} \] Simplifying the numerator: \[ \sqrt{x} + 4 + 3\sqrt{x} - 6 = 4\sqrt{x} - 2 \] So the entire numerator simplifies to: \[ \frac{4\sqrt{x} - 2}{(\sqrt{x} - 2)^2} \] ### Step 3: Simplify the Denominator **Denominator:** 1. First part: \( \frac{\sqrt{x}}{\sqrt{x} - 2} \) 2. Second part: \( \frac{\sqrt{x} + 2}{\sqrt{x}} \) To combine these, we find a common denominator, which is \( \sqrt{x}(\sqrt{x} - 2) \). Thus, we have: \[ \frac{\sqrt{x}^2}{\sqrt{x}(\sqrt{x} - 2)} - \frac{(\sqrt{x} + 2)(\sqrt{x} - 2)}{\sqrt{x}(\sqrt{x} - 2)} \] The second part expands and simplifies as: \[ (\sqrt{x})^2 - 4 = x - 4 \] Combining gives us: \[ \frac{x - (x - 4)}{\sqrt{x}(\sqrt{x} - 2)} = \frac{4}{\sqrt{x}(\sqrt{x} - 2)} \] ### Step 4: Final Expression So now we have: \[ \frac{\frac{4\sqrt{x} - 2}{(\sqrt{x} - 2)^2}}{\frac{4}{\sqrt{x}(\sqrt{x} - 2)}} \] Now, multiply by the reciprocal: \[ \frac{(4\sqrt{x} - 2) \cdot \sqrt{x}(\sqrt{x} - 2)}{(\sqrt{x} - 2)^2 \cdot 4} \] Cancelling \(4\) in the numerator and denominator gives us: \[ \frac{(4\sqrt{x} - 2) \cdot \sqrt{x}(\sqrt{x} - 2)}{(\sqrt{x} - 2)^2} \] ### Step 5: Final Simplification We can simplify the fraction by observing: \[ \frac{(4\sqrt{x} - 2)\sqrt{x}}{\sqrt{x} - 2} \] One more step to check simplifications could yield: When \( \sqrt{x} - 2 \) cancels further, we get: ### Conclusion: Thus, the simplified expression is \[ \frac{(4\sqrt{x} - 2)\sqrt{x}}{(\sqrt{x} - 2)} \] To simplify further: \[ = \frac{2\sqrt{x}(2\sqrt{x} - 1)}{(\sqrt{x} - 2)} \] Final answer may depend on constraints for \(x - 2\) not zero etc. Simplifying also returns consistent results with \(x\) in range of 0 to constraints. This summarizes the steps taken. Would you like to verify specific numerical values for \(x\) so we can further confirm or determine any constraints or specific evaluations?