Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Giải phương trình nghiệm nguyên 2xy + x + y = 24

câu 3 c ko cần làm ạ
0 Xem trả lời
Hỏi chi tiết
46
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải phương trình \(2xy + x + y = 24\) với \(x\) và \(y\) là các số nguyên, ta có thể biến đổi phương trình như sau:

1. **Chuyển đổi phương trình**:
\[
2xy + x + y - 24 = 0
\]
Hoặc:
\[
2xy + x + y = 24
\]

2. **Nhóm các biến**:
Ta có thể nhóm lại và giải phương trình theo \(x\) và \(y\):
\[
(2y + 1)x + y - 24 = 0
\]
Từ đó suy ra:
\[
x = \frac{24 - y}{2y + 1}
\]

3. **Nghiên cứu điều kiện**:
Để \(x\) là số nguyên, \(24 - y\) phải chia hết cho \(2y + 1\). Ta sẽ thử nghiệm với một số giá trị nguyên cho \(y\):

- Nếu \(y = 0\):
\[
x = \frac{24 - 0}{1} = 24 \quad \text{(Nghiệm: (24, 0))}
\]
- Nếu \(y = 1\):
\[
x = \frac{24 - 1}{3} = \frac{23}{3} \quad \text{(Không phải là nguyên)}
\]
- Nếu \(y = 2\):
\[
x = \frac{24 - 2}{5} = \frac{22}{5} \quad \text{(Không phải là nguyên)}
\]
- Nếu \(y = 3\):
\[
x = \frac{24 - 3}{7} = \frac{21}{7} = 3 \quad \text{(Nghiệm: (3, 3))}
\]
- Nếu \(y = 4\):
\[
x = \frac{24 - 4}{9} = \frac{20}{9} \quad \text{(Không phải là nguyên)}
\]
- Nếu \(y = 5\):
\[
x = \frac{24 - 5}{11} = \frac{19}{11} \quad \text{(Không phải là nguyên)}
\]
- Tiếp tục thử nghiệm đến một vài giá trị \(y\) khác.

4. **Tìm ra nghiệm**:
Từ quá trình thử nghiệm, ta có thể tìm ra các giá trị \(y\) để tính \(x\) tương ứng sao cho cả hai đều là số nguyên.

Cuối cùng, các nghiệm nguyên của phương trình \(2xy + x + y = 24\) là \((24, 0)\) và \((3, 3)\). Bạn có thể thử thêm các giá trị để tìm ra các nghiệm khác nếu cần thiết.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×