Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm n sao cho kết quả số tự nhiên

A= 3n-5/n-2 
a; sao cho kết quả số tự nhiên 
0 Xem trả lời
Hỏi chi tiết
65
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm giá trị của \( n \) sao cho \( A = \frac{3n - 5}{n - 2} \) là một số tự nhiên, ta tiến hành phân tích biểu thức này.

Trước tiên, chúng ta cần khảo sát xem \( A \) có thể là số tự nhiên trong trường hợp nào. Để làm điều này, chúng ta sẽ biến đổi biểu thức:

\[
A = \frac{3n - 5}{n - 2}
\]

Chúng ta có thể chia tử và mẫu như sau:

\[
A = 3 + \frac{1}{n - 2}
\]

Điều này có nghĩa là \( A \) sẽ là một số tự nhiên khi mà \( \frac{1}{n - 2} \) là một số nguyên. Điều đó chỉ xảy ra khi \( n - 2 \) là một ước của 1 (vì 1 chia cho 1 là 1).

Có hai giá trị cho \( n - 2 \):

1. \( n - 2 = 1 \) \( \Rightarrow n = 3 \)
2. \( n - 2 = -1 \) \( \Rightarrow n = 1 \)

Với hai giá trị này, ta kiểm tra xem \( A \) có phải là số tự nhiên hay không:

1. Khi \( n = 3 \):
\[
A = \frac{3(3) - 5}{3 - 2} = \frac{9 - 5}{1} = 4 \quad (\text{số tự nhiên})
\]

2. Khi \( n = 1 \):
\[
A = \frac{3(1) - 5}{1 - 2} = \frac{3 - 5}{-1} = \frac{-2}{-1} = 2 \quad (\text{số tự nhiên})
\]

Do đó, các giá trị hợp lệ của \( n \) sao cho \( A \) là số tự nhiên là:
\[
n = 1 \quad \text{và} \quad n = 3
\]

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×