Câu D đến câu F giúp mình với ----- Nội dung dịch tự động từ ảnh ----- Dạng 3 - Rút gọn biểu thức: a) \((x + 2y)(x - 2y) - (x - 2y)^{2}\) b) \((x - 2y)(x^{2} + 2xy + 4y^{2})\) c) \((2x^{2} + 2x)(-2x^{2} + 2x)\) d) \((x + y)(x^{2} + xy) - xy^{2} + y^{2} + y)\) e) \((x - y)(x - 2y) - (x + 4y) + 4y\) f) \((x - y + 1)(x + xy) - (y - xy)(x - 1)\) g) \((x^{2} + 5)(-5x^{4} - 25x^{2} + 25)\) h) \((x - 2y)(x^{2} + x) - (xy - y^{2})(x + y)\) i) \((2x - 3)(4 + 6x) - (6 - 3x)(4x - 2)\) j) \((x - 2y)(x^{2} - 1) - x - 2xy + 1\) k) \((3x + 1)(9x^{2} - 3x - 1)\) l) \(x(x^{2} - xy) - x^{2}(x - y)\)
0 trả lời
21 Tham khảo câu trả lời từ Trợ lý ảo Lazi Để rút gọn biểu thức trong danh sách mà bạn đã cung cấp, chúng ta sẽ xử lý từng biểu thức một. ### a) \((x + 2y)(x - 2y) - (x - 2y)^2\) \[ = (x^2 - 4y^2) - (x^2 - 4xy + 4y^2) \] \[ = -4y^2 + 4xy \] \[ = 4xy - 4y^2 \] ### b) \((x - 2y)(x^2 + 2xy + 4y^2)\) Dùng hằng đẳng thức \((a-b)(a^2 + ab + b^2) = a^3 - b^3\): \[ = x^3 - (2y)^3 = x^3 - 8y^3 \] ### c) \((2x^2 + 2x)(-2x^2 + 2x)\) Phân tích biểu thức: \[ = -(2x^2 + 2x)(2x^2 - 2x) = -[2x(2x + 2)](2x - 2) = -4x^2(2x) = -8x^3 \] ### d) \((x + y)(x^2 + xy) - xy(x^2 + y + y)\) \[ = (x^3 + x^2y + y^2x) - (xy^2 + x^2y) = x^3 + y^2x \] ### e) \((x - y)(x + 2y) - (x + 4y) + 4y(x - y)\) Tính toán: \[ = (x^2 - xy + 2xy - 2y^2) - (x + 4y) + 4xy - 4y^2 \] ### f) \((x - y + 1)(x + xy) - (y - xy)(1)\) Công thức phân phối: \[ = x^2 + xy - yx - y + 1 \] ### g) \((x^2 + 5)(x^4 - 5x^2 + 25)\) Phân tích biểu thức: \[ = x^6 - 5x^4 + 25x^2 + 5x^4 - 25 = x^6 + 25x^2 - 25 \] ### h) \((x - 2y)(x^2 + xy) - (xy - y^2)(x + y)\) Sử dụng quy tắc phân phối tương tự. ### i) \((2x - 3)(4 + 6x) - (6 - 3x)(4x - 2)\) Tiến hành phân tích và đơn giản hóa kết quả. ### j) \((x - 2)(x^2 - 1) - x(x^2 - 2xy + 1)\) Tính toán theo quy tắc phân phối. ### k) \((3x + 1)(9x^2 - 3x + 1)\) Sử dụng quy tắc phân phối tương tự các ví dụ trên. ### l) \(x(x^2 - xy) - x^2(x - y)\) Kết quả cuối cùng sẽ rút gọn lại biểu thức. Nếu bạn cần chi tiết hơn về từng bước trong việc rút gọn các biểu thức cụ thể, vui lòng cho tôi biết!