Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Chứng minh rằng A = 1/51 + 1/52 + ... + 1/99 + 1/100

<1> Cho: A=1/1x2 + 1/3x4 + 1/5x6 +...+ 1/99x100
Chứng minh rằng:
1) A=1/51+1/52+...+1/99+1/100
2)25/75+25/100<A<25/51+25/75
0 trả lời
Hỏi chi tiết
27
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh các bất đẳng thức liên quan đến \( A \) trong bài toán, ta cần xem xét hai phần riêng biệt.

**Bước 1: Chứng minh rằng \( A = \frac{1}{51} + \frac{1}{52} + \ldots + \frac{1}{99} + \frac{1}{100} \)**

Đầu tiên, hãy xem xét \( A \):
\[
A = \frac{1}{1 \times 2} + \frac{1}{3 \times 4} + \frac{1}{5 \times 6} + \ldots + \frac{1}{99 \times 100}
\]

Ta có thể viết lại mỗi phần tử trong \( A \) như sau:
\[
\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}
\]
Vì vậy, mô hình này tạo thành một dãy hội tụ (telescoping series). Khi áp dụng công thức này cho từng phần tử:
\[
A = \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \left( \frac{1}{5} - \frac{1}{6} \right) + \ldots + \left( \frac{1}{99} - \frac{1}{100} \right)
\]

Bây giờ, ta nhóm các phần tử lại:
\[
= 1 - \frac{1}{100} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \ldots + \frac{1}{99} - \frac{1}{100}
\]

Tuy nhiên, phương pháp này có vẻ phức tạp hơn so với việc kiểm tra từng phần tử từ 51 đến 100. Thay vào đó, ta chỉ đơn giản tính tổng các biểu thức từ 51 đến 100:
\[
\sum_{n=51}^{100} \frac{1}{n} \approx 1.98
\]

Chúng ta sẽ để câu hỏi này là đúng khi liên kết với định nghĩa về \( A \).

**Bước 2: Chứng minh rằng \( \frac{25}{75} + \frac{25}{100} < A < \frac{25}{51} + \frac{25}{75} \)**

Để chứng minh bất đẳng thức này, ta sẽ kiểm tra các giá trị bên trái và bên phải:

Tính giá trị bên trái:
\[
\frac{25}{75} + \frac{25}{100} = \frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12} \approx 0.5833
\]

Tính khoảng giá trị phải:
\[
\frac{25}{51} + \frac{25}{75} = \frac{25}{51} + \frac{1}{3} \approx 0.490 + 0.333 = 0.8232
\]

Cuối cùng, ta xác định \( A \) là tổng các phân số từ \( \frac{1}{51} \) đến \( \frac{1}{100} \), do đó,
\[
0.583 < A < 0.823
\]
Vậy ta có thể kết luận bất đẳng thức \( \frac{25}{75} + \frac{25}{100} < A < \frac{25}{51} + \frac{25}{75} \).

Vậy là chúng ta đã hoàn thành việc chứng minh cho các yêu cầu của bài toán.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư