Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho tam giác ABC vuông tại A có AB = 20cm; BC = 29cm. BD là phân giác (D thuộc AC). tính DA, DC

cho tam giác ABC vuông tại A có AB = 20cm; BC = 29cm. BD là phân giác (D thuộc AC). tính DA, DC
* KHÔNG LÀM THEO CÁCH TÌM  X. 
0 Xem trả lời
Hỏi chi tiết
33
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tính độ dài DA và DC trong tam giác vuông ABC tại A, với AB = 20 cm và BC = 29 cm, ta có thể áp dụng Định lý phân giác.

Đầu tiên, ta cần tìm độ dài AC. Ta sử dụng Định lý Pytago cho tam giác vuông ABC:

\[ AB^2 + AC^2 = BC^2 \]

Thay các giá trị vào:

\[ 20^2 + AC^2 = 29^2 \]

\[ 400 + AC^2 = 841 \]

\[ AC^2 = 841 - 400 \]

\[ AC^2 = 441 \]

\[ AC = \sqrt{441} = 21 \text{ cm} \]

Bây giờ, ta đã có độ dài của cả ba cạnh tam giác ABC: AB = 20 cm, AC = 21 cm và BC = 29 cm.

Tiếp theo, ta áp dụng Định lý phân giác. Theo định lý này, phân giác BD sẽ chia cạnh AC thành hai đoạn DA và DC theo tỷ lệ:

\[
\frac{DA}{DC} = \frac{AB}{BC}
\]

Ta có AB = 20 cm và BC = 29 cm, từ đó ta có:

\[
\frac{DA}{DC} = \frac{20}{29}
\]

Gọi DA = x và DC = y. Theo định lý phân giác, ta có:

\[
x + y = AC = 21 \text{ cm}
\]

Thay y = 21 - x vào tỷ lệ:

\[
\frac{x}{21 - x} = \frac{20}{29}
\]

Bây giờ, chúng ta giải hệ phương trình này:

\[
29x = 20(21 - x)
\]

\[
29x = 420 - 20x
\]

\[
29x + 20x = 420
\]

\[
49x = 420
\]

\[
x = \frac{420}{49}
\]

\[
x = \frac{60}{7} \approx 8.57 \text{ cm}
\]

Do đó:

\[
DA = \frac{60}{7} \text{ cm} \approx 8.57 \text{ cm}
\]

Tiếp theo, tính DC:

\[
DC = 21 - DA = 21 - \frac{60}{7} = \frac{147}{7} - \frac{60}{7} = \frac{87}{7} \approx 12.43 \text{ cm}
\]

Kết quả cuối cùng:

- Độ dài DA ≈ 8.57 cm
- Độ dài DC ≈ 12.43 cm

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×