Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC.
So sánh MA với MI + IA, từ đó chứng minh MA + MB < IB + IA.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Theo giả thiết, điểm M nằm trong tam giác ABC nên điểm M không nằm trên cạnh AC.
⇒ A, M, I không thẳng hàng.
Xét bất đẳng thức tam giác trong ΔAMI:
MA < MI + IA
⇒ MA + MB < MB + MI + IA (cộng cả hai vế với MB)
hay MA + MB < IB + IA (vì MB + MI = IB).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |