LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

Chứng minh rằng nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

1 trả lời
Hỏi chi tiết
31
0
0
Phạm Văn Bắc
10/09 00:01:39

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 7 mới nhất
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư