Cho tam giác ABC vuông tại A. Về phía ngoài tam giác, vẽ các hình vuông ABDE, ACFG.
a) Chứng minh tứ giác BCGE là hình thang cân.
b) Gọi K là giao điểm của các tia DE và FG, M là trung điểm của đoạn thẳng EG. Chứng minh ba điểm K, A, M thẳng hàng.
c) Chứng minh
d) Chứng minh DC, FB và AM đồng quy.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì ABDE, ACFG là các hình vuông nên ta có E, A, C thẳng hàng và B, A, G cũng thẳng hàng (1) và EC = BG.
Mà EBA^=AGC^= 450 (2).
Từ (1) và (2)
Suy ra EB//CG & EC = BG Þ EBCG là hình thang cân.
b) Chứng minh AEKG là hình chữ nhật, mà M là trung điểm EG nên K, A, M thẳng hàng.
c) Gọi H = MA Ç BC
Vì BEGC là hình thang cân nên DBEG = DEBC (c-g-c) Þ ECB^=EGB^ mà EGA^=MAG^=BAH^
Þ BAH^+ABC^=ECB^+ABC^ = 900 Þ MA ^BC tại H.
d) DABK = DBDC vì AB = DB, KA = EG = BC, BAK^=DBC^⇒BKA^=BCD^ mà KA ^ BC Þ CD ^ BK.
Chứng minh tương tự ta cũng có BF ^ KC.
Þ DKBC cosBF, CD, AM là 3 đường cao Þ đồng quy tại trực tâm I
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |