1. Cho đường tròn (O; R) và dây BC cố định, BC = R3 A là điểm di động trên cung lớn BC (A khác B, C) sao cho tam giác ABC nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại điểm H. Kẻ đường kính AF của đường tròn (O), AF cắt BC tại điểm N
a, Chứng minh tứ giác BEDC là tứ giác nội tiếp
b, Chứng minh AE.AB = AD.AC
c, Gọi I là trung điểm của BC. Chứng minh rằng F, I, H thẳng hàng
2. Một hình trụ có diện tích xung quanh bằng 128π cm2, chiều cao bằng bán kính đáy. Tính thể tích của hình trụ đó
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1.
a, Xét tứ giác BEDC có:
∠BEC = 900 (CE là đường cao)
∠BDC = 900 (BD là đường cao)
=> Hai đỉnh D và E cùng nhìn cạnh BC dưới 1 góc vuông
=> Tứ giác BEDC là tứ giác nội tiếp
b, Xét ΔAEC và ΔADB có:
∠BAC là góc chung
∠AEC = ∠BDA = 900
=> ΔAEC ∼ ΔADB (g.g)
=> AEAD = ACAB
=> AE.AB = AC.AD
c, Ta có:
∠FBA = 900 (góc nội tiếp chắn nửa đường tròn)
=>FB⊥AB
Lại có: CH⊥AB (CH là đường cao)
=> CH // FB
Tương tự,( FCA) = 900 (góc nội tiếp chắn nửa đường tròn)
=>FC⊥AC
BH là đường cao => BH ⊥AC
=> FC // BH
Xét tứ giác CFBH có:
CH // FB
FC // BH
=> Tứ giác CFBH là hình bình hành.
Mà I là trung điểm của BC
=> I cũng là trung điểm của FH
Hay F, I, H thẳng hàng
2. Diện tích xung quanh của hình trụ:
S = 2πRh = 2πR2 = 128π (do chiều cao bằng bán kính đáy)
=> R = 8 cm ; h = 8cm
Thể tích của hình trụ là
V = πR2 h = π.82.8 = 512π (cm3)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |