Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = x2 và đường thẳng (d) : y = 2mx – 2m + 1
a, Với m = –1, hãy vẽ 2 đồ thị hàm số trên cùng một hệ trục tọa độ
b, Tìm m để (d) và (P) cắt nhau tại 2 điểm phân biệt : A (x1; y1 );B(x2; y2) sao cho tổng các tung độ của hai giao điểm bằng 2
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a, Với m = 1; (d): y = 2x – 1
Bảng giá trị
(P) : y = x2
Bảng giá trị
Đồ thị hàm số y = x2 là đường parabol nằm phía trên trục hoành, nhận Oy làm trục đối xứng và nhận điểm O(0; 0) là đỉnh và điểm thấp nhất
b, Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = 2mx – 2m + 1
⇔ x2 – 2mx + 2m - 1 = 0
Δ' = m2 – (2m – 1)=(m – 1)2
(d) và (P) cắt nhau tại 2 điểm phân biệt khi và chỉ khi phương trình hoành độ giao điểm có 2 nghiệm phân biệt
⇔ Δ' > 0 ⇔ (m – 1)2 > 0 ⇔ m ≠ 1
Khi đó (d) cắt (P) tại 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)
Theo định lí Vi-et ta có: x1 + x2 = 2m
Từ giả thiết đề bài, tổng các tung độ giao điểm bằng 2 nên ta có:
2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2
⇔ 2m (x1 + x2) – 4m + 2 = 2
⇔ 4m2 – 4m = 0 ⇔ 4m(m – 1) = 0
⇔ m = 0 hoặc m = 1
Đối chiếu với điều kiện m ≠ 1, thì m = 0 thỏa mãn
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |