Cho ΔABC cân tại A, có đường cao AH H∈BC. Gọi M là trung điểm của đoạn thẳng AB. Gọi E là điểm đối xứng với H qua M.
a) Chứng minh tứ giác AHBE là hình chữ nhật.
b) Gọi n là trung điểm của AH, chứng minh N là trung điểm của EC.
c) Cho AH = 8 cm, BC = 12 cm. Tính diện tích ΔAHM.
d) Trên tia đối của tia HA lấy điểm F. Kẻ HK⊥FC K∈FC. Gọi I, Q lần lượt là trung điểm của HK, KC. Chứng minh BK⊥FI.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Do E là điểm đối xứng với H qua M nên M là trung điểm của EH.
Lại có M là trung điểm của AB nên hai đường chéo AB và EH của tứ giác AHBE cắt nhau tại trung điểm mỗi đường nên tứ giác là hình bình hành.
Mặt khác AH là đường cao của ΔABC nên góc AHB vuông.
Vậy tứ giác AHBE là hình chữ nhật.
b) Do AHBE là hình chữ nhật nên
AE//BH; AE=BH⇒AE//HC; AE=HC⇒tứ giác AEHC là hình bình hành. Suy ra hai đường chéo AH và EC cắt nhau tại trung điểm của mỗi đường, mà N là trung điểm của AH nên N là trung điểm của EC.
c) Do M là trung điểm của đoạn thẳng AB và N là trung điểm của AH nên MN là đường trung bình của ΔABH suy ra
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |