Áp dụng bất đẳng thức Cô-si cho hai số không âm, chứng minh: Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Với hai số không âm a và b, bất đẳng thức Cô-si cho hai số đó là:
a+b2≥ab
Các hình chữ nhật có cùng chu vi thì a+b2 không đổi. Từ bất đẳng thức a+b2≥ab và không đổi suy ra ab đạt giá trị lớn nhất bằng a+b2 khi a = b.
Điều này cho thấy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |