Bài tập  /  Bài đang cần trả lời

Qua tâm G của tam giác đều ABC, kẻ đường thẳng a cắt BC tại M và cắt AB tại N, kẻ đường thẳng b cắt AC tại P và AB tại Q, đồng thời góc giữa a và b bằng 60ο. Chứng minh rằng tứ giác MNPQ là một hình thang cân.

Qua tâm G của tam giác đều ABC, kẻ đường thẳng a cắt BC tại M và cắt AB tại N, kẻ đường thẳng b cắt AC tại P và AB tại Q, đồng thời góc giữa a và b bằng 60ο. Chứng minh rằng tứ giác MNPQ là một hình thang cân.

1 Xem trả lời
Hỏi chi tiết
18
0
0
Phạm Văn Bắc
10/09/2024 12:46:49

Gọi QG;120ο là phép quay tâm G góc 120ο. Phép quay này biến b thành a, biến CA thành AB; do đó nó biến P thành N.

Tương tự QG;120ο cũng biến Q thành M. Từ đó suy ra GP = GN, GQ = GM. Do đó hai tam giác GNQ và GPM bằng nhau, suy ra NQ = PM. Vì QG;120ο biến PQ thành NM nên PQ = NM. Từ đó suy ra hai tam giác NQM và PMQ bằng nhau. Do đó ∠NQM = ∠PMQ. Tương tự ∠QNP = ∠MPN.

Từ đó suy ra PNQ^ + NQM^ = 180o

Do đó NP // QM. Vậy ta có tứ giác MPNQ là hình thang cân.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×