Tiếp tuyến tại một điểm S bất kì của C cắt hai tiệm cận của C tại P và Q. Chứng minh rằng S là trung điểm của PQ.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi là điểm thuộc (C).
+ Phương trình tiếp tuyến (d) của (C) tại S là:
+ Giao điểm của (d) với tiệm cận đứng x = -1 là:
Tại x = -1 thì
⇒ Giao điểm
+ Giao điểm của (d) với tiệm cận ngang y = 1:
Tại y = 1
⇒ Giao điểm Q(2x0 + 1; 1)
Ta có:
⇒ S là trung điểm PQ (đpcm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |