Trên mặt phẳng (α) cho hình bình hành ABCD tâm O. Gọi S là một điểm nằm ngoài mặt phẳng (α) sao cho SA = SC, SB = SD. Chứng minh rằng:
a) SO ⊥(α)
b) Nếu trong mặt phẳng (SAB) kẻ SH vuông góc với AB tại H thì AB vuông góc với mặt phẳng (SOH).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
+ Do ABCD là hình bình hành có tâm O- giao điểm hai đường chéo
=> O là trung điểm AC và BD( tính chất hình bình hành)
* Xét tam giác SAC có SA= SC nên tam giác SAC cân tại S
Lại có SO là đường trung tuyến nên đồng thời là đường cao: SO ⊥ AC
+ Tương tự, tam giác SBD cân tại S có SO là đường trung tuyến nên đồng thời là đường cao:
b) SO ⊥ (α) ⇒ SO ⊥ AB.
Lại có: SH ⊥ AB;
SO, SH ⊂ (SOH) và SO ∩ SH
⇒ AB ⊥ (SOH).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |