Bài tập  /  Bài đang cần trả lời

Trên mặt phẳng (α) cho hình bình hành ABCD tâm O. Gọi S là một điểm nằm ngoài mặt phẳng (α) sao cho SA = SC, SB = SD. Chứng minh rằng:a) SO ⊥(α)b) Nếu trong mặt phẳng (SAB) kẻ SH vuông góc với AB tại H thì AB vuông góc với mặt phẳng (SOH).

Trên mặt phẳng (α) cho hình bình hành ABCD tâm O. Gọi S là một điểm nằm ngoài mặt phẳng (α) sao cho SA = SC, SB = SD. Chứng minh rằng:

a) SO ⊥(α)

b) Nếu trong mặt phẳng (SAB) kẻ SH vuông góc với AB tại H thì AB vuông góc với mặt phẳng (SOH).

1 Xem trả lời
Hỏi chi tiết
12
0
0
CenaZero♡
10/09/2024 17:40:30

a)

+ Do ABCD là hình bình hành có tâm O- giao điểm hai đường chéo

=> O là trung điểm AC và BD( tính chất hình bình hành)

* Xét tam giác SAC có SA= SC nên tam giác SAC cân tại S

Lại có SO là đường trung tuyến nên đồng thời là đường cao: SO ⊥ AC

+ Tương tự, tam giác SBD cân tại S có SO là đường trung tuyến nên đồng thời là đường cao:

b) SO ⊥ (α) ⇒ SO ⊥ AB.

Lại có: SH ⊥ AB;

SO, SH ⊂ (SOH) và SO ∩ SH

⇒ AB ⊥ (SOH).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×