Cho đường tròn (O) đường kính AB, E thuộc đoạn AO (E khác A, O và AE > EO). Gọi H là trung điểm của AE , kẻ dây CD vuông góc với AE tại H.
a) Tính góc \(\widehat {ACB}\)?
b) Tứ giác ACED là hình gì?
c) Gọi I là giao điểm của DE và BC. Chứng minh HI là tiếp tuyến của đường tròn đường kính EB?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì \(\widehat {ACB}\) là góc nội tiếp chắn nửa đường tròn nên \(\widehat {ACB} = 90^\circ \)
b) Xét (O) có:
OH là một phần đường kính
CD là dây
OH ⊥ CD tại H
Do đó: H là trung điểm của CD
Xét tứ giác ECAD có
H là trung điểm của đường chéo CD
H là trung điểm của đường chéo EA
Do đó: ECAD là hình bình hành
Mà EA ⊥ CD
Nên ECAD là hình thoi
c) ACED là hình thoi nên DE //AC
Mà AC ⊥ BC nên DE ⊥ BC
Suy ra: DI ⊥ BC
⇒ \(\widehat {EIB} = 90^\circ ;\widehat {CID} = 90^\circ \)
Xét tam giác CID vuông tại I có IH là trung tuyến
⇒ IH \( = \frac{1}{2}CD = DH\)
⇒ ∆DHI cân tại H ⇒ \(\widehat {HID} = \widehat {EBI}\)
Gọi M là trung điểm BE
Suy ra: IM là trung tuyến của ∆IBE vuông tại I.
⇒ IM = \(\frac{1}{2}BE = BM\)
⇒ ∆MBI cân tại M
⇒ \(\widehat {MBI} = \widehat {MIB} = \widehat {EBI} = \widehat {HID}\)
Ta có: \(90^\circ = \widehat {EIB} = \widehat {B{\mathop{\rm I}\nolimits} M} + \widehat {E{\mathop{\rm I}\nolimits} M} = \widehat {HID} + \widehat {EIM} = \widehat {H{\mathop{\rm I}\nolimits} M}\)
Suy ra: HI ⊥ IM tại I.
Vì IM = EM = BM = \(\frac{1}{2}BE\)và HI ⊥ IM nên HI là tiếp tuyến của \(\left( {M;\frac{2}} \right)\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |