Tam giác ABC nội tiếp (O), AD là đường kính của (O). M là trung điểm của của BC, H là trực tâm của tam giác ABC. Gọi X, Y, Z lần lượt là hình chiếu vuông góc của D lên HB, HC, BC. Chứng minh rằng 4 điểm X, Y, Z, M cùng thuộc 1 đường tròn.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử HB cắt DY tại I, HC cắt DX tại K, J là trung điểm IK
Xét tam giác ADC có \(\widehat {ACD} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)
Nên AC ⊥ CD
Mà BH ⊥ AC. Nên BH // CD
Tương tự: \(\widehat {ABD} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn)
Nên AB ⊥ BD
Mà CH ⊥ AB nên CH // BD
Xét tứ giác BHCD có: BH // CD và CH // BD nên BHCD là hình bình hành.
⇒ HD, BC cắt nhau tại trung điểm M của mỗi đường
Vì DX ⊥ HI, DI ⊥ HC suy ra K là trực tâm của tam giác IHD
Nên: \[\widehat {KDI} = \widehat {KHI} = \widehat {HCD}\](HI //CD)
\(\widehat {CHD} = \widehat {KID}\)(cùng phụ với \(\widehat {HDI}\))
Xét tam giác KID và tam giác CHD có:
\(\widehat {KID} = \widehat {CHD}\)
\[\widehat {KDI} = \widehat {HCD}\]
⇒ ∆KID ∽ ∆CHD (g.g)
Mặt khác CM, DJ là hai trung tuyến tương ứng của tam giác CHD và KID
Như vậy ta có: ∆DIJ ∽ ∆CHM
⇒ \[\widehat {JDI} = \widehat {HCM}\]
Từ đó suy ra: DJ vuông góc với BC tại Z hay Z thuộc đường tròn đường kính MJ.
Lại có: M là trung điểm HD (chứng minh trên)
X, Y, Z lần lượt là hình chiếu vuông góc của D lên HB, HC, BC
Kết hợp tính chất điểm M thì đường tròn đường kính MJ là đường trò Ơ–le của tam giác HID.
Suy ra: X, Y, Z, M cùng thuộc 1 đường tròn.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |