Tìm các số tự nhiên a, b sao cho:
a) a26b chia hết cho cả 2, 3, 5 và 9;
b) 123.a + 9 873.b = 2 227 691.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Để số chia hết cho 2, 5 thì b = 0;
Khi đó số cần tìm là: a26b
Ta có: a + 2 + 6 + 0 = a + 8;
Để số a26b chia hết cho 3 và 9 thì a + 8 chia hết cho 3 và 9.
Mà a là chữ số và a khác 0 nên a = 1.
Vậy a = 1, b = 0 thì số a26b chia hết cho cả 2, 3, 5 và 9.
b) Ta có 1 + 2 + 3 = 6 chia hết cho 3 nên 123 chia hết cho 3. Do đó 123.a chia hết cho 3.
Ta có: 9 + 8 + 7 + 3 = 27 chia hết cho 3 nên 9 873 chia hết cho 3. Do đó 9 873.b chia hết cho 3.
Vì vậy 123.a + 9 873.b chia hết cho 3.
Ta lại có: 2 + 2 + 2 + 7 + 6 + 9 + 1 = 29 không chia hết cho 3.
Do đó không tồn tại a và b thỏa mãn yêu cầu bài toán.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |