Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 2, chia cho 5 dư 3, chia cho 7 dư 4.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi số tự nhiên cần tìm là a (a > 1).
Do a chia cho 3 dư 2, chia cho 5 dư 3, chia cho 7 dư 4 nên 2a chia cho 3, 5, 7 dư 1.
Suy ra 2a – 1 chia hết cho 3, 5, 7 hay 2a – 1 là bội chung của 3, 5, 7.
Như vậy để a là số tự nhiên nhỏ nhất thỏa mãn yêu cầu đề bài thì 2a – 1 phải là BCNN(3, 5, 7).
Ta có 3 = 3, 5 = 5, 7 = 7.
Khi đó BCNN(3, 5, 7) = 3.5.7 = 105 nên 2a – 1 = 105 suy ra a = 53.
Vậy số cần tìm là 53.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |