Học sinh của một trường trung học cơ sở khi xếp hàng 20 học sinh, hàng 25 học sinh, hàng 30 học sinh đều thừa 15 học sinh, nhưng xếp vào hàng 41 học sinh thì vừa đủ. Tính số học sinh của trường đó, biết số học sinh của trường ít hơn 1 200 học sinh.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi số học sinh của trường đó là x (học sinh) (x ∈ N, x < 1200) .
Vì học sinh của trường đó khi xếp hàng 20 học sinh, hàng 25 học sinh, hàng 30 học sinh đều thừa 15 học sinh nên số học sinh của trường đó trừ đi 15 chia hết cho 20, 25, 30. Nghĩa là x – 15 thuộc BC(20, 25, 30).
Ta có 20 = 22.5, 25 = 52, 30 = 2.3.5.
Khi đó BCNN(20, 25, 30) = 22.3.52 = 300.
BC(20, 25, 30) = B(300) = {0; 300; 600; 900; 1 200; 1 500; …}.
Suy ra x – 15 ∈ {0; 300; 600; 900; 1 200; 1 500; …}.
Hay x ∈ {15; 315; 615; 915; 1 215; 1 515; …}.
Mà số học sinh xếp vào hàng 41 học sinh thì vừa đủ nên x chia hết cho 41.
Trong các giá trị của x ở trên ta thấy x = 615 chia hết cho 41 và nhỏ hơn 1 200.
Vậy trường đó có tất cả 615 học sinh.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |