Cho tứ giác ABCD có D^+C^=90°. Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử AD cắt BC tại E
Khi đó từ giả thiết: D^+C^=90°ta có: E^=180°−C^+D^=90°
Ta lần lượt có: MN // AD // PQ; MQ // BC // PN
Do đó dựa trên tính chất của góc có cạnh tương ứng song song ta được:
MNQ^=NPQ^=E^=90°
Do đó bốn điểm M, N, P, Q cùng nằm trên một đường tròn đường kính NQ.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |