Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang vuông tại $A$ và $B$, $SA \bot \left( {ABCD} \right)$, $AD = 2a,\,AB = BC = a$. Chứng minh rằng $DC \bot \left( {SAC} \right)$.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi $I$ là trung điểm của $AD$. Suy ra $AI = ID = \frac{1}{2}AD = a$.
Ta có $AI = BC\,\,\left( { = a} \right)$ và $AI\,{\text{//}}\,BC\,\,\left( {{\text{do}}\,AD\,{\text{//}}\,BC} \right)$ nên tứ giác $ABCI$ là hình bình hành. Lại có $AI = AB = a$ nên $ABCI$ là hình thoi, mà $\widehat {ABC} = 90^\circ $, do đó $ABCI$ là hình vuông. Khi đó, $\widehat {AIC} = 90^\circ $, suy ra $\widehat {CID} = 90^\circ $.
Tam giác $ICD$ có $ID = IC = a$ và $\widehat {CID} = 90^\circ $ nên tam giác $ICD$ vuông cân tại $I$.
Suy ra $\widehat {ICD} = 45^\circ $.
Lại có $\widehat {ACI} = \frac{1}{2}\widehat {BCI} = \frac{1}{2} \cdot 90^\circ = 45^\circ $ (vì $ABCI$ là hình vuông).
Nên ta có $\widehat {ACD} = \widehat {ACI} + \widehat {ICD} = 90^\circ $. Suy ra $AC \bot CD$.
Mà \[CD \bot SA\,\,\left( {{\text{do}}\,\,SA \bot \left( {ABCD} \right)} \right)\], từ đó suy ra $DC \bot \left( {SAC} \right)$.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |