Tìm giá trị nhỏ nhất của mỗi hàm số sau:
b) f(x) = x3 – 12x + 1 trên khoảng (1; + ∞).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
b) Xét hàm số f(x) = x3 – 12x + 1 với x ∈ (1; + ∞).
Ta có f'(x) = 3x2 – 12. Khi đó, trên khoảng (1; + ∞), f'(x) = 0 khi x = 2.
Ngoài ra limx→1+fx=f1=−10, limx→+∞fx=+∞.
Bảng biến thiên của hàm số như sau:
Căn cứ vào bảng biến thiên, ta thấy minf(x) = – 15 tại x = 2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |