Trong mặt phẳng (P) cho hình bình hành ABCD. Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với (P) lần lượT đi qua các điểm A, B, C, D. Một mặt phẳng (Q) cắt bốn nửa đường thẳng nói trên tại A’, B’, C’, D’. Chứng minh rằng:
AA’ + CC’ = BB’ + DD’.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
+) Ta có:
(AA’B’B) // (DD’C’C)
(Q) ∩ (AA’B’B) = A’B’
(Q) ∩ (DD’C’C) = D’C’
⇒ A’B’ // D’C’ (1).
+) Tương tự ta có:
(AA’D’D) // (BB’C’C)
(Q) ∩ (AA’D’D) = A’D’
(Q) ∩ (BB’C’C) = B’C’
⇒ A’D’ // B’C’ (2).
Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.
Gọi O và O’ lần lượt là tâm của các hình bình hành ABCD và A’B’C’D’ nên O là trung điểm của AC và BD và O’ là trung điểm của A’C’ và B’D’.
+) Xét tứ giác ACC’A’, có: CC’ // AA’ nên ACC’A’ là hình thang, O là trung điểm của AC và O’ là trung điểm của A’C’ nên OO’ là đường trung bình của hình thang suy ra: OO'=12AA'+CC' (1).
+) Xét tứ giác BB’D’D, có: BB’ // DD’ nên BB’D’D là hình thang, O là trung điểm của BD và O’ là trung điểm của B’D’ nên OO’ là đường trung bình của hình thang suy ra: OO'=12BB'+DD' (2).
Từ (1) và (2) suy ra AA’ + CC’ = BB’ + DD’.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |