Cho tam giác ABC nhọn có các đường cao BD, CE. Tia phân giác của các góc ACE, ABD cắt nhau tại O và cắt AB, AC lần lượt tại M, N. Tia BN cắt CE tại K, tia CM cắt BD tại H. Chứng minh:
BN ⊥ CM;
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do AD, CE là đường cao của ∆ABC nên AD ⊥ AC, CE ⊥ AB.
Do đó ∆ABD vuông tại D và ∆ACE vuông tại E nên \(\widehat {ABD} + \widehat A = \widehat {ACE} + \widehat A = 90^\circ \)
Suy ra \(\widehat {ABD} = \widehat {ACE}\).
Mà BN và CM lần lượt là tia phân giác của \(\widehat {ABD}\) và \(\widehat {ACE}\), suy ra \(\widehat {ABN} = \widehat {DBN} = \widehat {ACM} = \widehat {ECM}\).
Do ∆CEM vuông tại E nên \(\widehat {ECM} + \widehat {EMC} = 90^\circ \)
Suy ra \(\widehat {ABN} + \widehat {EMC} = 90^\circ \) hay \(\widehat {MBO} + \widehat {BMO} = 90^\circ \).
Trong tam giác MOB có: \(\widehat {MBO} + \widehat {BMO} + \widehat {BOM} = 180^\circ \)
Suy ra \(\widehat {BOM} = 180^\circ - \left( {\widehat {MBO} + \widehat {BMO}} \right) = 180^\circ - 90^\circ = 90^\circ \).
Vậy BN ⊥ CM.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |