Cho hình vuông ABCD. Lấy điểm E thuộc cạnh CD và điểm F thuộc tia đối của tia BC sao cho BF = DE.
Gọi I là trung điểm của EF. Trên tia đối của tia IA lấy điểm K sao cho IK = IA. Chứng minh tứ giác AEKF là hình vuông.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do IK = IA nên I là trung điểm của AK.
Tứ giác AEKF có hai đường chéo AK, EF cắt nhau tại trung điểm I của mỗi đường nên AEKF là hình bình hành.
Hình bình hành AEKF có \(\widehat {EAF} = 90^\circ \) nên AEKF là hình chữ nhật.
Hình chữ nhật AEKF có AE = AF nên AEKF là hình vuông.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |