Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại S. Kẻ tiếp tuyến chung ngoài AB, CD với A, C thuộc (O), B,D∈O'
Chứng minh rằng AB+CD=AC+BD
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vẽ tiếp tuyến chung tại S lần lượt cắt AB, CD ở M, N. Theo tính chất tiếp tuyến ta có:
AM=SM=BMCN=SN=DN do đó: AB+CD=2MN(1)
Mặt khác OO' là trục đối xứng của hình nên C đối xứng với A qua OO', D đối xứng với B qua OO' nên AC⊥OO',BD⊥OO' do đó AC//BD⇒ABCD là hình thang.
M, N lần lượt là trung điểm của AB, CD nên MN là đường trung bình hình thang ABCD.
⇒AC+BD=2MN(2)
Từ (1) và (2) suy ra AB+CD=AC+BD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |