Cho hàm số y = x3 − 3mx2 + 2 có đồ thị (Cm) và đường thẳng Δ: y = −x + 2. Biết (Cm) có hai cực trị và khoảng cách từ điểm cực tiểu của (Cm) đến đường thẳng Δ bằng 2. Tìm m.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét y’ = 0, ta có:
y’ = 3x2 – 6mx = 3x(x – 2m) = 0
⇔x=0 x=2m
Điều kiện để có hai cực trị là 2m ¹ 0 hay m ¹ 0.
Tọa độ 2 điểm cực trị là: A(0; 2) và B(2m; 2 – 4m3)
Nếu m < 0: A là điểm cực tiểu.
Khi đó d(A; ∆) = 0 ¹ 2 (loại)
Nếu m > 0 thì B là cực tiểu
Khi đó d(B; Δ)=2⇔2m3−m=1
⇔2m3−m=1 2m3−m=−1⇔m=1 m=−1
Do m > 0 nên m = 1.
Vậy m = 1.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |