Giải các phương trình sau:
a) \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \);
b) \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \)
Bình phương hai vế của phương trình trên ta được,
3x2 – 6x + 1 = –2x2 – 9x + 1.
Thu gọn phương trình trên ta được: 5x2 + 3x = 0 ⇔ x(5x + 3) = 0 ⇔ x = 0 hoặc x = \( - \frac{3}{5}\).
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và x = \( - \frac{3}{5}\) đều thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = \(\left\{ {0;\, - \frac{3}{5}} \right\}\).
b) \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \)
Bình phương hai vế của phương trình trên ta được,
2x2 – 3x – 5 = x2 – 7.
Thu gọn ta được: x2 – 3x + 2 = 0.
Giải phương trình bậc hai x2 – 3x + 2 = 0 tìm được x = 1 hoặc x = 2.
Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |