Bài tập  /  Bài đang cần trả lời

Chọn ngẫu nhiên 4 viên bi từ một túi đựng 4 viên bi đỏ và 6 viên bi xanh đôi một khác nhau. Gọi A là biến cố: “Trong bốn viên bi đó có cả bi đỏ và cả bi xanh”. Tính P(A) và P(\(\overline A \)).

Chọn ngẫu nhiên 4 viên bi từ một túi đựng 4 viên bi đỏ và 6 viên bi xanh đôi một khác nhau. Gọi A là biến cố: “Trong bốn viên bi đó có cả bi đỏ và cả bi xanh”. Tính P(A) và P(\(\overline A \)).
1 Xem trả lời
Hỏi chi tiết
14
0
0
Phạm Văn Phú
11/09 10:24:04

Hướng dẫn giải

Phép thử là chọn ngẫu nhiên 4 viên bi từ túi gồm 10 viên bi (4 viên bi đỏ và 6 viên bi xanh).

Chọn 4 viên bi từ 10 viên bi, thì số cách chọn là: \(C_{10}^4\) = 210 (cách).

Do đó, số phần tử của không gian mẫu là n(Ω) = 210.

Xét biến cố A, để có cả bi đỏ và bi xanh thì ta có các trường hợp sau:

+ Trường hợp 1: chọn 1 bi xanh trong 6 bi xanh, 3 bi đỏ trong 4 bi đỏ, số cách chọn là: \(C_6^1.C_4^3 = \) 24.

+ Trường hợp 2: chọn 2 bi xanh trong 6 bi xanh, 2 bi đỏ trong 4 bi đỏ, số cách chọn là: \(C_6^2.C_4^2\) = 90.

+ Trường hợp 3: chọn 3 bi xanh trong 6 bi xanh, 1 bi đỏ trong 4 bi đỏ, số cách chọn là: \(C_6^3.C_4^1\) = 80.

Do các trường hợp là rời nhau nên n(A) = 24 + 90 + 80 = 194.

Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac = \frac.\)

Từ đó suy ra, P(\(\overline A \)) = 1 – P(A) = \(1 - \frac = \frac{8}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×