Bài tập  /  Bài đang cần trả lời

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {x - 4} \right)\left( {x + 3} \right)\left( {x - m} \right)\) với mọi \(x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 10\,;\,\,10} \right]\) để hàm số đã cho có điểm cực tiểu là \(x = 4?\)

Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {x - 4} \right)\left( {x + 3} \right)\left( {x - m} \right)\) với mọi \(x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 10\,;\,\,10} \right]\) để hàm số đã cho có điểm cực tiểu là \(x = 4?\)

1 Xem trả lời
Hỏi chi tiết
9
0
0
Phạm Văn Bắc
11/09 10:27:59

Ta có \(f'\left( x \right) = \left( {x - 4} \right)\left( {x + 3} \right)\left( {x - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 4}\\{x =  - 3}\\{x = m}\end{array}} \right..\)

• TH1: Với \(m =  - 3 \Rightarrow f'\left( x \right) = \left( {x - 4} \right){\left( {x + 3} \right)^2}\)

Suy ra hàm số đã cho có duy nhất 1 điểm cực trị là \(x = 4.\)

• TH2: Với \(m \ne \left\{ { - 3\,;\,\,4} \right\}\) thì \(f'\left( x \right) = 0\) có ba nghiệm đơn phân biệt

Suy ra hàm số đã cho có duy nhất 3 điểm cực trị là \(x = 4\,;\,\,x =  - 3\,;\,\,x = m.\)

Để \(x = 4\) là điểm cực tiểu thì \(m <  - 3.\)

Khi đó, thứ tự các điểm cực trị từ bé đến lớn là \(x = m\,;\,\,x =  - 3\,;\,\,x = 4.\)

Vậy \(m \le  - 3\) và \[m \in \left[ { - 10\,;\,\,10} \right],\,\,m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 10\,;\,\, - 9\,;\,\, - 8\,;\,\, \ldots \,;\,\, - 3} \right\}.\] Đáp án: 8.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×