Lợi nhuận (I) thu được trong một ngày từ việc kinh doanh một loại gạo của cửa hàng phụ thuộc vào giá bán (x) của một kilôgam loại gạo đó theo công thức I = - 3x2 + 200x – 2 325, với I và x được tính bằng nghìn đồng. Giá trị x như thế nào thì cửa hàng có lãi từ loại gạo đó.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì x là giá bán của một kilôgam gạo nên x ≥ 0
Đặt f(x) = - 3x2 + 200x – 2 325 là tam thức bậc hai với a = -3, b = 200, c = -2 325.
Ta có ∆ = 2002 – 4.(-3).(-2 325) = 12 100 > 0. Do đó phương trình có hai nghiệm phân biệt là x1 = 15 và x2 = 1553 và a = -3 < 0.
Khi đó ta có bảng xét dấu:
Suy ra f(x) dương khi x thuộc khoảng 15;1553 và f(x) âm khi x thuộc hai khoảng (0; 15) và 1553;+∞.
Cửa hàng có lãi từ loại gạo đó khi I > 0 hay f(x) > 0.
Vậy với x thuộc khoảng 15;1553 thì cửa hàng có lãi từ loại gạo đó.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |