Trong không gian \[Oxyz,\] cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x - 6y + m = 0\) (\(m\) là tham số) và đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 4 + 2t}\\{y = 3 + t}\\{z = 3 + 2t}\end{array}} \right..\) Biết đường thẳng \(\Delta \) cắt mặt cầu \((S)\) tại hai điểm phân biệt \[A,\,\,B\] sao cho \(AB = 8.\) Giá trị của \(m\) là
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi \(H\) là trung điểm đoạn thẳng \(AB \Rightarrow IH \bot AB\,,\,\,HA = 4.\)
Mặt cầu \((S)\) có tâm \(I\left( { - 2\,;\,\,3\,;\,\,0} \right)\), bán kính \(R = \sqrt {13 - m} ,\,\,\left( {m < 13} \right).\)
Đường thẳng đi qua \(M\left( {4\,;\,\,3\,;\,\,3} \right)\) và có một vectơ chỉ phương \(\vec u = \left( {2\,;\,\,1\,;\,\,2} \right).\)Ta có: \(\overrightarrow {IM} = \left( {6\,;\,\,0\,;\,\,3} \right) \Rightarrow \left[ {\overrightarrow {IM} \,,\,\,\vec u} \right] = \left( { - 3\,;\,\, - 6\,;\,\,6} \right)\)\( \Rightarrow IH = d\left( {I,\,\,\Delta } \right) = \frac{{\left| {\left[ {\overrightarrow {IM} \,,\,\,\vec u} \right]} \right|}}{{\left| {\vec u} \right|}} = 3.\)
Ta có: \({R^2} = I{H^2} + H{A^2} \Leftrightarrow 13 - m = {3^2} + {4^2} \Leftrightarrow m = - 12.\)
Đáp án: −12.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |