Có bao nhiêu giá trị nguyên âm của tham số \(m\) để hàm số \(y = \left| {{x^5} + 2{x^4} - m{x^2} + 3x - 20} \right|\) nghịch biến trên khoảng \(\left( { - \infty \,;\,\, - 2} \right)\)?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đặt \(f\left( x \right) = {x^5} + 2{x^4} - m{x^2} + 3x - 20 \Rightarrow y = \left| {f\left( x \right)} \right| \Rightarrow y' = \frac{{f'\left( x \right) \cdot f\left( x \right)}}{{\left| {f\left( x \right)} \right|}}\)
Yêu cầu bài toán \( \Leftrightarrow y' \le 0\,;\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right) \Leftrightarrow f'\left( x \right) \cdot f\left( x \right) \le 0\,;\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right).\)
• TH1: \(\left\{ {\begin{array}{*{20}{l}}{f'\left( x \right) \ge 0}\\{f\left( x \right) \le 0}\end{array};\forall x \in \left( { - \infty \,;\,\, - 2} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{5{x^4} + 8{x^3} - 2mx + 3 \ge 0}\\{f\left( { - 2} \right) \le 0}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2mx \le 5{x^4} + 8{x^3} + 3;\forall x \in \left( { - \infty \,;\,\, - 2} \right)}\\{{{\left( { - 2} \right)}^5} + 2 \cdot {{\left( { - 2} \right)}^4} - m \cdot {{\left( { - 2} \right)}^2} + 3 \cdot \left( { - 2} \right) - 20 \le 0}\end{array}} \right.\)
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \ge \frac{{5{x^4} + 8{x^3} + 3}}{x};\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right)}\\{ - 4m - 26 \le 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \ge {{\max }_{\left( { - \infty \,;\,\, - 2} \right)}}\left( {5{x^3} + 8{x^2} + \frac{3}{x}} \right)}\\{ - 4m \le 26}\end{array}} \right.} \right.\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \ge - \frac{2}}\\{m \ge - \frac{2}}\end{array} \Leftrightarrow m \ge - \frac{4}} \right.\) mà \(m \in {\mathbb{Z}^ - }\) nên \[m \in \left\{ { - 4\,;\,\, - 3\,;\,\, - 2\,;\,\, - 1} \right\}.\]
• TH2: \(\left\{ {\begin{array}{*{20}{l}}{f'\left( x \right) \le 0}\\{f\left( x \right) \ge 0}\end{array};\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{5{x^4} + 8{x^3} - 2mx + 3 \le 0}\\{f\left( { - 2} \right) \ge 0}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2mx \ge 5{x^4} + 8{x^3} + 3;\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right)}\\{{{\left( { - 2} \right)}^5} + 2 \cdot {{\left( { - 2} \right)}^4} - m \cdot {{\left( { - 2} \right)}^2} + 3 \cdot \left( { - 2} \right) - 20 \ge 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \le \frac{{5{x^4} + 8{x^3} + 3}}{x};\,\,\forall x \in \left( { - \infty \,;\,\, - 2} \right)}\\{ - 4m - 26 \ge 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2m \le {{\min }_{\left( { - \infty \,;\,\, - 2} \right)}}\left( {5{x^3} + 8{x^2} + \frac{3}{x}} \right)}\\{ - 4m \ge 26}\end{array}} \right.\)\( \Leftrightarrow m \in \emptyset .\)
Vậy có tất cả 4 giá trị nguyên của tham số \(m\) cần tìm.
Đáp án: 4.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |