Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Theo trên AMN^ = ACM^ ⇒ AM là tiếp tuyến của đường tròn ngoại tiếp DECM. Nối MB ta có AMB^=900 , do đó tâm O1 của đường tròn ngoại tiếp DECM phải nằm trên BM.
Ta thấy NO1 nhỏ nhất khi NO1 là khoảng cách từ N đến BM ^BM. Gọi O1 là chân đường vuông góc kẻ từ N đến BM ta được O1 là tâm đường tròn ngoại tiếp D ECM có bán kính là O1M.
Do đó để khoảng cách từ N đến tâm đường tròn ngoại tiếp D ECM là nhỏ nhất thì C phải là giao điểm của đường tròn (O1), bán kính O1M với đường tròn (O) trong đó O1 là hình chiếu vuông góc của N trên BM.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |