LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Qua điểm M nằm ngoài (O), vẽ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC (tia MO nằm giữa hai tia MA và MB). a) Chứng minh MA2 = MB.MC. b) Kẻ AH vuông góc với OM tại H. Chứng minh MH.MO = MB.MC và tứ giác OHBC nội tiếp. c) Tia BH cắt (O) tại điểm thứ hai là K. Chứng minh C đối xứng K qua đường thẳng OM.

Qua điểm M nằm ngoài (O), vẽ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC (tia MO nằm giữa hai tia MA và MB).

a) Chứng minh MA2 = MB.MC.

b) Kẻ AH vuông góc với OM tại H. Chứng minh MH.MO = MB.MC và tứ giác OHBC nội tiếp.

c) Tia BH cắt (O) tại điểm thứ hai là K. Chứng minh C đối xứng K qua đường thẳng OM.

1 trả lời
Hỏi chi tiết
10
0
0
Tôi yêu Việt Nam
11/09 11:20:19

Lời giải

a) Xét ∆ABM và ∆CAM, có:

\[\widehat M\] chung;

\(\widehat {MAB} = \widehat {MCA}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung).

Do đó  (g.g).

Suy ra \(\frac = \frac\).

Vậy MA2 = MB.MC (điều phải chứng minh).

b) Ta có MA là tiếp tuyến của (O).

Suy ra \(\widehat {MAO} = 90^\circ \).

Tam giác MAO vuông tại A có AH là đường cao:

MA2 = MH.MO (hệ thức lượng trong tam giác vuông).

Mà MA2 = MB.MC (câu a).

Vậy MH.MO = MB.MC (điều phải chứng minh).

Xét ∆MBH và ∆MOC, có:

\[\widehat M\] chung;

\(\frac = \frac\) (do MH.MO = MB.MC).

Do đó  (c.g.c).

Suy ra \(\widehat {MBH} = \widehat {MOC}\) (cặp góc tương ứng).

Vậy tứ giác OHBC cùng thuộc một đường tròn.

c) Gọi I là giao điểm của Mk và (O).

Ta có \(\widehat {CBK} = \widehat {CIK}\) (cùng chắn ).

Mà \(\widehat {MBK} + \widehat {KBC} = 180^\circ \) và \(\widehat {MIC} + \widehat {CIK} = 180^\circ \).

Suy ra \(\widehat {MBK} = \widehat {MIC}\).

Xét ∆MIC và ∆MBK, có:

\(\widehat M\) chung;

\(\widehat {MBK} = \widehat {MIC}\) (chứng minh trên).

Do đó  (g.g).

Suy ra \(\frac = \frac = \frac\)

\( \Leftrightarrow \frac = \frac = \frac\)

\( \Leftrightarrow \frac = \frac = \frac\).

Xét ∆MIB và ∆MKC, có:

\(\widehat M\) chung;

\(\frac = \frac\) (chứng minh trên).

Do đó  (c.g.c).

Suy ra \(\widehat {MIB} = \widehat {MKC}\) (cặp góc tương ứng).

Mà hai góc này ở vị trí đồng vị.

Do đó IB // KC.

Vì vậy .

Suy ra \(\widehat {ICK} = \widehat {BKC}\).

Do đó tam giác HKC cân tại H.

Vì vậy HK = HC.

Mà OK = OC (= R).

Khi đó HO là đường trung trực của đoạn thẳng KC.

Vậy C đối xứng K qua đường thẳng OM.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư