Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Phương trình hoành độ giao điểm:
\(x + m - \frac = 0\)
\( \Leftrightarrow {x^2} + x\left( {m - 3} \right) + \left( {1 - m} \right) = 0\;(1)\)
Để hai đồ thị hàm số cắt nhau ở hai điểm thì phương trình (1) phải có hai nghiệm phân biệt
Û ∆ = (m − 3)2 − 4(1 − m) > 0
Û (m − 1)2 + 4 > 0 (luôn đúng với mọi m)
Khi đó x1, x2 là hai nghiệm của phương tình trên thì A(x1; x1 + m) và B(x2; x2 + m) là hai giao điểm của 2 đồ thị hàm số.
Không mất tính tổng quát, giả sử tam giác OAB vuông tại A.
\[ \Rightarrow \overrightarrow {OA} \bot \overrightarrow {AB} \Rightarrow \overrightarrow {OA} .\overrightarrow {AB} = 0\]
Þ x1(x2 − x1) + (x2 − x1)(x1 + m) = 0
\( \Rightarrow 2{x_1} + m = 0 \Rightarrow {x_1} = \frac{{ - m}}{2}\)
Áp dụng định lí Vi-ét:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = 3 - m\\{x_1}{x_2} = 1 - m\end{array} \right. \Rightarrow {x_2} = 3 - m - {x_1} = \frac{}\)
\( \Leftrightarrow 3 - \frac{m}{2} = \frac{{2\left( {m - 1} \right)}}{m} \Rightarrow m = 1 \pm \sqrt 5 \) (thỏa mãn)
Vậy \(m = 1 \pm \sqrt 5 \)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |